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Little is known about the biological mechanisms that shape the distribution of intervals between the comple-
tion of RNA molecules �Tp

RNA�, and thus transcriptional noise. We characterize numerically and analytically
how the promoter open complex delay ��P� and the transcription initiation rate �kt� shape Tp

RNA. From this, we
assess the noise and mean of transcript levels and show that these can be tuned both independently and
simultaneously by �P and kt. Finally, we characterize how �P affects bursting in RNA production and show that
the �P measured for a lac promoter best fits independent measurements of the burst distribution of the same
promoter. Since �P affects noise in gene expression, and given that it is sequence dependent, it is likely to be
evolvable.
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I. INTRODUCTION

The stochastic nature of the multiple sequential chemical
reactions involved in transcription and translation cause fluc-
tuations in genes’ expression levels, which are further en-
hanced by the low number of transcription events, transcrip-
tion factors, and transcription factor binding sites �1,2�. This
noise affects cellular functioning �3,4�, cell differentiation
pathway selection �5,6�, and adaptability of organisms to the
environment �7�, besides having implications in pathological
processes �2,8�.

The first stochastic models of gene expression �5� as-
sumed this process as instantaneous, and can match mean
expression of genes and of some small gene regulatory net-
works �GRNs� at quasiequilibrium �9�. Subsequent studies
showed that the time between transcription initiation and the
production of an active protein affects the dynamics of
GRNs �9–13�.

Transcription and translation comprise multiple steps. In
prokaryotes, transcription starts with the binding of an RNA
polymerase �Rp� to a promoter �P� and the formation of the
open complex �14,15�, during which time no other Rp can
bind to the promoter �ranging from seconds to minutes �14��.
This process delays the production of the RNA molecule
after transcription initiation, and is here referred to as the
“promoter delay” ��P�.

This delay varies between transcription events �16�. For
example, �P of the lac promoter follows a Gaussian-like dis-
tribution with a mean of 40 s and a standard deviation of 4 s
�17�. �P also varies widely from gene to gene �18�.

Simulations of a multidelayed stochastic toggle switch
�19� provided evidence that the effects of �P on GRN dynam-
ics is not accountable by having only a delay on protein
completion, as �P makes the promoter unavailable for reac-
tions for a time period.

Given that the delay on protein production alone does not
capture effects of other delays on GRN dynamics, multide-
layed stochastic models of prokaryotic transcription and
translation were proposed �20� and, consequently, multide-

layed stochastic models of prokaryote GRNs �21�. Subse-
quent studies using these models assessed by inspection how
several parameters, including �P, affect protein fluctuations
�10,13�.

Pedraza and Paulsson �22� characterized how the distribu-
tion of time intervals between the production of consecutive
RNA molecules �Tp

RNA� and proteins affects noise in RNA
and proteins levels, using previous theoretical results �23�.
Their study did not focus on what determines the shape of
this distribution.

Using Monte Carlo �MC� and analytical methods, we
study how in prokaryote gene expression the promoter delay,
�P, and the transcription initiation rate, kt, shape the distribu-
tion Tp

RNA. Our analysis is made for all values of �P and kt

within realistic intervals according to measurements, and we
further extend previous works �10,13� by accounting for the
fact that �P varies between transcription events, in agreement
with measurements �14,17�.

While we focus on the role of �P and kt, events in elon-
gation such as stochastic stepwise movement in the DNA
template �15�, collisions between Rp �20�, backtracking
�24–26� and pauses �26,27�, also affect Tp

RNA and transcrip-
tional noise �24,25�. Their effects are here accounted for in
the distribution of intervals between completion of RNA
molecules. Relevantly, these events do not affect the distri-
bution of intervals between completion of ribosome binding
site region of the RNA �RBS�, which allows initiating trans-
lation in prokaryotes.

We first present the multidelayed stochastic model of gene
expression, followed by the analytical deduction of the dis-
tribution of time intervals between completions of consecu-
tive RNA molecules as a function of �P and kt. We then
estimate numerically and analytically the noise and mean
level of transcripts and show that these can be tuned inde-
pendently and simultaneously, by varying �P and kt. Finally,
we assess numerically and analytically how �P directly af-
fects transcriptional bursting and confront our calculations
with measurements.
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II. DELAYED STOCHASTIC MODEL OF GENE
EXPRESSION

We model gene expression by reactions with multiple de-
lays �21� and simulate the dynamics according to the delayed
stochastic simulation algorithm �SSA� �20�, which innovates
relative to previous ones �9,11� in that it can handle more
than one delayed event per reaction.

Transcription has three main phases: initiation, elonga-
tion, and termination. In E. coli, for transcription to start, the
Rp has to find a start site, form a closed complex, isomerize
into an open complex, and clear the promoter region �17�.
The duration of this process is sequence dependent �17�, var-
ies from one transcription event to the next �16� and differs
between different genes. After, the Rp moves along the DNA
strand �elongation� while forming the RNA molecule. In the
end, a single-stranded RNA molecule is released �termina-
tion� �14�.

Reaction 1 models transcription �21� as a single-step mul-
tidelayed reaction. An Rp can bind to P and initiate tran-
scription with a stochastic rate constant kt. This reaction has
three products, all delayed. First, P is released for new reac-
tions after �P elapses and, at approximately the same time, a
ribosome binding site molecule is produced �13� �not mod-
eled explicitly�. This is followed by the release of the Rp for
new reactions, and of a complete RNA molecule

P + Rp→
kt

P��P� + Rp��Rp� + RNA��RNA� . �1�

If product X has a delay �, represented by X���, it takes �
seconds for X to be produced after the reaction occurs. � can
be randomly drawn from a distribution each time the reaction
occurs �28�. If all delays were set to zero, when an Rp bound
to P, it would instantaneously produce an RNA and release
Rp and P for new reactions.

Each of these delays affects the dynamics differently. �P
imposes a minimum time between transcription events �14�.
�Rp can cause the number of available Rp to vary signifi-
cantly if these exist in low amounts, affecting the propensity
of transcription. �RNA, which can vary significantly from one
transcription event to the next �26�, causes a temporal trans-
lation in the amount of RNA, and consequently, of proteins
in the cell �22�. In �13�, it was numerically assessed that if
���Rp��kt�−1+�P���Rp, then �Rp does not affect the dynam-
ics significant �� · � denotes the amount of a substance�.

Note that under normal conditions in prokaryotic tran-
scription, �Rp and �RNA are very similar but not identical. I.e.,
the RNA is usually released slightly before the Rp �29�. The
difference between these two delays might vary from gene to
gene �sequence dependence�, thus we opted for defining each
delay by a unique variable, although in our simulations �Rp
and �RNA are set to the same value.

In E. coli, in normal conditions, there are �28 Rp’s avail-
able for transcription at any moment �30�. Stress can cause
overexpression of many genes, decreasing the number of
available Rp’s, consequently limiting transcription. Since we
do not address such stress situations, we maintain the num-
ber of available Rp’s constant and disregard the explicit
presence of Rp’s in analytical estimations.

Reaction 2 models RNA degradation at the rate dRNA

RNA →
dRNA

� . �2�

Values of delays, rate constants, and initial quantities of
each substance are described in the results section. Note that
the model used here is applicable to prokaryotes, but not to
eukaryotes, which would require at least one extra step to
account for chromatin remodeling �31�.

III. RESULTS

A. Distribution of time intervals between consecutive
completions of RNA molecules

We determined analytically the distribution of intervals
between the production of consecutive RBS, Tp

RBS �released
at the same time as the promoter �13,21��, and between the
production of consecutive RNA, Tp

RNA, accounting for the
delay �P and elongation time. For comparison, we also de-
duce expressions assuming no delays.

The model being stochastic, we study the probability dis-
tribution of Tp

RBS and Tp
RNA: their mean �, variance �2 and

coefficient of variation cv �defined as � /��. These quantities
can be analytically deduced from properties of the delayed
SSA �20�. Exp��� denotes the exponential distribution with a
mean of �−1, while �t=kt�Rp� is the propensity of transcrip-
tion �32�. Let Xt�Exp��t� denote the time for a free pro-
moter to initiate transcription. The time between the produc-
tion of two consecutive RBS molecules equals Xt+�P
+�RBS−�RBS

prev, where �RBS is the time it takes to produce the
RBS under consideration and �RBS

prev is the time it took to pro-
duce the previous one. Both �RBS and �RBS

prev need to be con-
sidered as transcription initiation can occur again before the
preceding one is fully complete. The expression for the time
between the creations of two complete RNA molecules is
obtained similarly. The expressions in Table I describe how
the mean, the variance, and the cv of the distributions explic-
itly depend on the delays �P, �RBS, and �RNA.

Importantly, for constant delays or a distribution with
small variance in comparison to the mean �as in the lac pro-
moter in E. coli, which has a mean of 40 s and a standard
deviation of 4 s �17��, the time between transcription events
varies less as �P increases, with consequences on the noise
levels of transcripts.

We verified the expressions in Table I by MC simulations.
As an example, we set kt=10−2 s−1 �13�, �P�N�40,42�s
�17�, and �RBS�N�45,42�s �10�. Thus, from Table I,

TABLE I. Probability distribution of Tp
M, where M is either RBS

or RNA, and its mean, variance, and coefficient of variation. Xt is a
random variable drawn from the distribution Exp��t�, where �t

=kt�Rp�. All �’s are also random variables.

Delayed Nondelayed

Tp
M = Xt+�P+�M −�M

prev Xt

��Tp
M� = �t

−1+���P� �t
−1

�2�Tp
M� = �t

−2+�2��P�+2�2��M� �t
−2

cv�Tp
M� = ��t

−2+�2��P�+2�2��M� /�t
−1+���P� 1
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��Tp
RBS�=42.5 s. To ensure the same ��Tp

RBS� in the nonde-
layed case, we set kt=5.9�10−4 s−1. The two scenarios are
simulated for 105 s. Figure 1 shows the Tp

RBS distributions
determined numerically and analytically for these parameter
values. The means of the distributions are 42.4 and 42.6 s,
while the standard deviations are 7.2 and 41.5 for the de-
layed and nondelayed case, respectively, as analytically pre-
dicted.

By affecting Tp
RBS and Tp

RNA, �P is expected to affect the
distribution of bursts in transcription, and thus the noise in
transcript levels, protein levels, and, consequently, GRNs’
dynamics.

B. Effects of �P and kt on the transcript levels

In �22�, it was shown that the noise in RNA and protein
levels depends on ��Tp

RNA� and ��Tp
RNA�. For the RNA, this

noise is �22�

cv�RNA� =�dRNA � ��Tp
RNA�

cv
2�Tp

RNA� + 1

2
. �3�

As mentioned in �22�, many physical parameters affect
this distribution, e.g., elongation times, which are affected by
events such as pauses, arrests, etc �24�. Formulas in Table I
show how ��Tp

RNA� and ��Tp
RNA� can be varied as a function

of two parameters, namely, �P and kt. Also, importantly, the
formulas show that ��Tp

RNA� and ��Tp
RNA� can be varied in-

dependently of one another.
By identifying and characterizing how these two physical

parameters of genes’ promoters, namely, the distribution of
the durations of the open complex formation and the affinity
between Rp and promoter region, shape Tp

RNA distribution,
one could predict, e.g., the effect of point mutations in the
promoter sequence on Tp

RNA, as these two parameters are
sequence dependent �16,17�.

We assessed numerically how well the formulas predict
RNA noise and mean level as a function of �P and kt. We
simulated gene expression and RNA degradation �reactions 1
and 2� for various values of �P and kt. dRNA is set to 1.389
�10−3 s−1 �within the interval of known RNA half-lives in
E. coli, i.e., 0.5–30 min �33��. To maintain the number of Rp
molecules constant, its delay is set to zero. Finally, �RNA is
set to zero so as to better assess the effects of �P alone on
transcripts’ mean and noise level.

Figure 2 illustrates how the mean and the coefficient of
variation in the RNA level can be varied independently or
simultaneously. Point �1� located at kt=4.25�10−4 s−1 and
�P=11.61 s has a mean of 10.1 and cv=0.30. Point �2� lo-
cated at kt=7.6�10−4 s−1 and �P=77.42 has the same cv as
point �1� but different mean of 6.41. Point �3� at kt=9
�10−4 s−1 and �P=42.58 s has the same mean as point �1�
but a cv of 0.25. One example of a change in both mean and
noise by tuning kt and �P is moving from point �2� to �3�.

Further, for smaller values of kt and not too large values
of �P, the cv �but not the mean� is roughly independent of �P
�cv contours are nearly vertical�. In this regime, the intervals
between transcription initiation events �determined mostly
by kt�, are much longer than �P. Thereby, �P plays almost no
role �if smaller than 50 s� as a limiting factor of transcription
initiation, as mentioned when describing the effects of each
delay in reaction 1 and as expected given the expression for
��Tp

RNA� �Table I�. On the other hand, the mean RNA level in
this regime varies almost linearly with kt, as it would in the
nondelayed case, again because the delay is not affecting
noise and rate of transcription.

One could argue that in this regime there is no particular
evolutionary constrain on the value of �P, up to a certain
extent �increasing beyond a certain duration would affect the
dynamics of transcription, thus be under evolutionary pres-
sure�.

C. Bursts in transcriptional dynamics

To assert if �P can directly affect the noise in gene expres-
sion, one needs to confront the transcriptional dynamics of
the model with measurements of the dynamical patterns of
RNA levels �22,34� for varying values of �P.

Tp
RNA determines the distribution of bursts in RNA levels,

defined as rapid increases in RNA levels from one measure-
ment to the next, thus RNA noise level �22�. We focus on the
effect of �P on Tp

RNA, thus, on RNA noise level. The rel-
evance of characterizing �P effects on noise is that �P is
sequence dependent �17�, thus evolvable.

We measure the distribution of changes in RNA amounts
from one measurement to the next in the simulation, for vari-
ous values of �P. From this, we obtain the burst size distri-
bution and compare it to the one obtained from measure-
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ments �35�. Note that other measurements, in eukaryotes, as,
e.g., in �36�, are not comparable to our model, given the
differences in transcriptional regulatory mechanisms be-
tween eukaryotes and prokaryotes.

Fortunately, the measurements with which we confront
our model were made in E. coli �35�, on a gene driven by the
lac promoter, for which the promoter delay length is well
known from independent measurements �17� ��40 s�. We
thus expect the best match between model and experiments
�35� to occur for �P�40 s �17�.

In the experiment described in �35�, E. coli cells were
grown and induced for MS2-GFP �fluorescent RNA binding
protein�. Measurements of fluorescence taken every minute
over a 2 h period were reported, from which the number of
RNA molecules can be determined �35�.

To confront model and experiments, we measured the dis-
tribution of bursts in RNA amounts, from measurements of
number of RNA molecules taken in intervals of 60 s in indi-
vidual model cells, for mean �P ranging from 0 to 100 s. The
number of samples taken �107� for each value of ���P� is
sufficient to obtain a good estimation of the real distribution.
These distributions were then confronted to the one obtained
from the measurements �120 data points �35�� by the two-
sample Kolmogorov-Smirnov �K-S� test, to assess their
goodness of fit.

We set kt to 0.4 min−1 �35� and a decay rate of
0.44 min−1 so as to match the mean RNA levels ��9
molecules� reported in �35�. RNA decay is modeled by reac-
tion 2.

We disregard noise sources in elongation �13,14,24,25�.
These can be significant if, e.g., the gene has sequences
prone to long pauses �15,24,27�, which is not the case for the
gene sequence used in these experiments. Also, for the value
of kt used, collisions between Rp’s in the strand are rare �20�,
not contributing to noise significantly. To assess which �P
best fits the experiments, we computed the p-values of the
K-S test between experiments and simulations for values of
�P from 0 to 100 s �Fig. 3�. The values of �P between 30 and
50 s have the highest p-values, i.e., these are the values that
best match the experimental data. While the p-values are not

very high, note that the experimental data consists of 120
data points and is affected by measurement noise �35�.

These results imply that �P has a significant effect on the
transcriptional dynamics of a gene. Importantly, the bursting
dynamics of a gene driven by a lac promoter �35� is best
matched by setting �P to the duration measured for that pro-
moter’s open complex formation in an independent experi-
ment �17�. This demonstrates the accuracy of this model of
prokaryotic gene expression.

Given the effects on the bursts distribution, it is then ex-
pected that �P affects the noise level of transcripts.

It is known that transcriptional and, consequently, trans-
lational noise vary if mean and standard deviation of Tp

RNA

vary �22,23�. Our results allow characterizing how �P and kt
affect Tp

RNA, and thus, RNA and protein noise levels. Given
the dependency of the dynamics of GRNs on the noise level
of its constituent genes �1,5,13,10,19,21� one can then con-
clude that the �P of each gene affects the dynamics of GRNs.

IV. CONCLUSIONS

The effects of kt on the noise in gene expression are well
known �5,2�. Less is known about how the various delays
during transcription and translation affect this noise.

We studied, analytically and numerically, the effects of
the delay associated to the open complex formation step in
the dynamics of transcription and translation. This delay
strongly affects the distribution of intervals between tran-
scription completions, and thus the bursting distribution of
RNA levels. Importantly, the best fit of our model to mea-
surements of a lac promoter’s bursting dynamics �35� is at-
tained by assuming a delay following a distribution identical
to the one assessed experimentally in an independent mea-
surement �17�.

Our main results are the numerical and analytical charac-
terization of Tp

RNA dependency on kt and �P, and from there,
the observation that the noise and mean of transcript and
protein levels can be varied independently, or simulta-
neously, by varying these two parameters. Notably, kt and �P
are sequence dependent, implying that mutations in the pro-
moter sequence are likely to allow the tuning of genes’ noise
and mean expression level, simultaneously or independently.

In the study of noise in gene expression, results regarding
its regulation on a general level exist �22�, i.e., how different
Tp

RNA distributions cause different noise levels. However,
little is known about the biological mechanisms that shape
Tp

RNA and thus transcriptional noise. The formula for Tp
RNA as

a function of �P and kt provides a partial answer to this
question in prokaryotic gene expression, namely, how the
initiation step of transcription contributes to noise.

Regarding general modeling strategies of stochastic gene
expression and genetic networks, our results suggest that
these need to represent explicitly the delay on the promoter
release and thus, the promoter itself, besides the delays as-
sociated to the completion of RNA and, in translation, of
proteins �9,11�, given that for experimentally measured time
lengths, the promoter open complex formation delay �16,17�
affects transcriptional dynamics.
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FIG. 3. p-values from the two-sampled K-S test between the
distribution of variations in RNA amounts in experiments and
model for various values of �P �from 0 to 100, step size of 1�.
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Our results also suggest that, in translation, the delay as-
sociated to the RBS release �13� needs to be explicitly mod-
eled as well. Further studies are needed to characterize the
effects on Tp

RNA of events in elongation, such as pauses �24�,
and consequently on transcriptional noise.

Since �P affects noise in gene expression and thus the
dynamics of GRNs, it is likely to be subject to selection.

Given that it is sequence dependent �14,15�, it is likely to be
evolvable.
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